Vibration-Based Fingerprint Algorithm for Structural Health Monitoring of Wind Turbine Blades

Author:

Loss TheresaORCID,Bergmann AlexanderORCID

Abstract

Monitoring the structural health of wind turbine blades is essential to increase energy capture and operational safety of turbines, and therewith enhance competitiveness of wind energy. With the current trends of designing blades ever longer, detailed knowledge of the vibrational characteristics at any point along the blade is desirable. In our approach, we monitor vibrations during operation of the turbine by wirelessly measuring accelerations on the outside of the blades. We propose an algorithm to extract so-called vibration-based fingerprints from those measurements, i.e., dominant vibrations such as eigenfrequencies and narrow-band noise. These fingerprints can then be used for subsequent analysis and visualisation, e.g., for comparing fingerprints across several sensor positions and for identifying vibrations as global or local properties. In this study, data were collected by sensors on two test turbines and fingerprints were successfully extracted for vibrations with both low and high operational variability. An analysis of sensors on the same blade indicates that fingerprints deviate for positions at large radial distance or at different blade sides and, hence, an evaluation with larger datasets of sensors at different positions is promising. In addition, the results show that distributed measurements on the blades are needed to gain a detailed understanding of blade vibrations and thereby reduce loads, increase energy harvesting and improve future blade design. In doing so, our method provides a tool for analysing vibrations with relation to environmental and operational variability in a comprehensive manner.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference25 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3