Modeling of Cutting Force in the Turning of AISI 4340 Using Gaussian Process Regression Algorithm

Author:

Alajmi Mahdi S.,Almeshal Abdullah M.ORCID

Abstract

Machining process data can be utilized to predict cutting force and optimize process parameters. Cutting force is an essential parameter that has a significant impact on the metal turning process. In this study, a cutting force prediction model for turning AISI 4340 alloy steel was developed using Gaussian process regression (GPR), support vector machines (SVM), and artificial neural network (ANN) methods. The GPR simulations demonstrated a reliable prediction of surface roughness for the dry turning method with R2 = 0.9843, MAPE = 5.12%, and RMSE = 1.86%. Performance comparisons between GPR, SVM, and ANN show that GPR is an effective method that can ensure high predictive accuracy of the cutting force in the turning of AISI 4340.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference27 articles.

1. Modeling Flank Wear Progression Based on Cutting Force and Energy Prediction in Turning Process

2. Optimization of Cutting Parameters of Turning Operations by using Geometric Programming;Suhil;Am. J. Eng. Appl. Sci.,2010

3. A Method to Determine Cutting Force Coefficients in Turning Using Mechanistic Approach;Bera;Int. J. Mater. Mech. Manuf.,2018

4. Finite Element Modelling of Cutting Forces and Power Consumption in Turning of AISI 420 Martensitic Stainless Steel

5. Prediction of Cutting Force in Turning Process-an Experimental Approach

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermomechanical modeling of flank wear in turning;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2024-08-04

2. Advanced Sensing and Machine Learning Technologies for Intelligent Measurement in Smart and Precision Manufacturing;International Journal of Automation Technology;2024-07-05

3. Analytical Modeling Methods in Machining: A State of the Art on Application, Recent Challenges, and Future Trends;Arabian Journal for Science and Engineering;2024-06-05

4. AI-based optimisation of total machining performance: A review;CIRP Journal of Manufacturing Science and Technology;2024-06

5. AI for tribology: Present and future;Friction;2024-03-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3