Development of a Novel Omnidirectional Treadmill-Based Locomotion Interface Device with Running Capability

Author:

Pyo SanghunORCID,Lee Hosu,Yoon JungwonORCID

Abstract

To achieve an immersive virtual reality (VR) environment, omnidirectional treadmills (ODTs) allow users to perform locomotion in any direction. However, existing ODTs are heavy and complex, and operate at low speeds. This limits fast user motion and prevents natural interactions in real applications such as military training programs and interactive games. In this paper, we introduce a novel locomotion interface device with running capability, which uses an omnidirectional treadmill with a new power transmission mechanism and a locomotion controller that enables the user to make fast movements. As a result of the improved power transmission performance due to the simple and relatively lightweight structure, the proposed two-dimensional treadmill can generate a maximum speed of 3 m/s, with an acceleration of 3 m/s2. Moreover, through a pilot test with the proposed locomotion interface device, we verified that the fast directional changes during walking and running with the designed speed adaptation controller do not exceed the acceleration performance of the proposed system. Due to its wide range of movement speeds and acceleration capabilities, and lack of any motion constraints, the proposed locomotion interface device with a novel ODT can be used as a representative platform in various VR environments to enhance the immersive experience.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of a Stress-Free Algorithm for Control of Running Platforms Based on Neural Network Technologies;Informatics and Automation;2024-05-28

2. Spatial Contraction Based on Velocity Variation for Natural Walking in Virtual Reality;IEEE Transactions on Visualization and Computer Graphics;2024-05

3. Development of a stress-free algorithm for controlling active running platforms;ITM Web of Conferences;2024

4. Creating a treadmill running video game with smartwatch interaction;Multimedia Tools and Applications;2023-12-12

5. Structural and functional models of adaptive motion control system in virtual reality;INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE “INNOVATIVE TECHNOLOGIES IN AGRICULTURE”;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3