Trichoderma longibrachiatum Inoculation Improves Drought Resistance and Growth of Pinus massoniana Seedlings through Regulating Physiological Responses and Soil Microbial Community

Author:

Yu Cun1,Jiang Xian1,Xu Hongyun2,Ding Guijie1

Affiliation:

1. College of Forestry, Guizhou University, Huaxi District, Guiyang 550025, China

2. College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China

Abstract

Drought stress poses a serious threat to Pinus massoniana seedling growth in southern China. Trichoderma species, as beneficial microorganisms, have been widely used in agriculture to enhance plant growth and drought tolerance, but the interaction mechanisms remain unclear. To investigate the effect of drought-resistant Trichoderma longibrachiatum inoculation on P. massoniana growth under drought stress, the plant physiological indicators and rhizosphere microbiome diversity were measured to identify Trichoderma-activated mechanisms. Trichoderma longibrachiatum inoculation significantly promoted P. massoniana growth under drought treatment, and enhanced nitrogen, phosphorus, and potassium absorption compared with those of non-inoculated seedlings. Trichoderma longibrachiatum treatment alleviated the damage to cell membranes and needle tissue structure, and significantly increased antioxidant enzyme activities, osmotic substance contents, and photosynthesis in P. massoniana in response to drought stress. Soil nutrient contents, activities of sucrase, phosphatase, and urease as well as the relative abundances of the dominant genera Burkholderia, Rhodanobacter, and Trichoderma were elevated in the rhizosphere soil of P. massoniana inoculated with T. longibrachiatum under drought stress. A network analysis showed that certain crucial dominant taxa driven by T. longibrachiatum inoculation, including Penicillium, Trichoderma, Simplicillium, Saitozyma, Burkholderia, Bradyrhizobium, Sinomonas, and Mycobacterium, had more correlations with other microorganisms in the soil. Trichoderma longibrachiatum enhanced P. massoniana seedling growth under drought stress by regulating physiological responses and soil microbial community.

Funder

National Natural Science Foundation of China

Qian Ke He Foundation ZK

Qian Ke He

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3