Developing Growth Models of Stand Volume for Subtropical Forests in Karst Areas: A Case Study in the Guizhou Plateau

Author:

Tang YuzhiORCID,Shao Quanqin,Shi Tiezhu,Wu Guofeng

Abstract

Forest stand volume is one of the key forest structural attributes in estimating and forecasting ecosystem productivity and carbon stock. However, studies on growth modeling and environmental influences on stand volume are still rare to date, especially in subtropical forests in karst areas, which are characterized by a complex species composition and are important in the global carbon budget. In this paper, we developed growth models of stand volume for all the dominant tree species (groups) (DTSG) in a subtropical karst area, the Guizhou Plateau based on an investigation of the effects of various environmental factors on stand volume. The Richards growth function, space-for-time substitution and zonal-hierarchical modeling method were applied in the model fitting, and multiple indices were used in the model evaluation. The results showed that the climatic factors of annual temperature and precipitation, as well as the site factors of stand origin, elevation, slope gradient, topsoil thickness, site quality degree, rocky desertification type and rocky desertification degree, have significant influences on stand volume, and the topsoil thickness and site quality degree have the strongest positive effect. A total of 959 growth equations of stand volume were fitted with a five-level stand classifier (DTSG–climatic zone–site quality degree–stand origin–rocky desertification type). All the growth equations were qualified, because all passed the TRE test (≤30%), and the majority of the R2 ≥ 0.50, above 70% of the RMSE were between 5.0 and 20.0, and above 80% of the P ≥ 75%. These findings provide updated knowledge about the environmental effect on the stand volume growth of subtropical forests in karst areas, and the developed stand volume growth models are convenient for forest management and planning, further contributing to the study of forest carbon storage assessments and global carbon cycling.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3