Towards Qualification in the Aviation Industry: Impact Toughness of Ti6Al4V(ELI) Specimens Produced through Laser Powder Bed Fusion Followed by Two-Stage Heat Treatment

Author:

Monaheng Lehlohonolo Francis,du Preez Willie BouwerORCID,Polese ClaudiaORCID

Abstract

Laser powder bed fusion (L-PBF) has the potential to be applied in the production of titanium aircraft components with good mechanical properties, provided the technology has been qualified and accepted in the aviation industry. To achieve acceptance of the L-PBF technology in the aircraft industry, mechanical property data needed for the qualification process must be generated according to accepted testing standards. The impact toughness of Ti6Al4V extra low interstitial (ELI) specimens, produced through L-PBF followed by annealing, was investigated in this study. Charpy impact testing complying with American Standard Test Method (ASTM) E23 was performed with specimens annealed and conditioned at low temperature. On average, the toughness recorded for the specimens with 3D-printed and machined V-notches was 28 J and 31 J, respectively. These results are higher than the 24 J required in the aerospace industry. Finally, fractographic analyses of the fracture surfaces of the specimens were performed to determine the fracture mechanism of the Ti6Al4V(ELI) impact specimens.

Funder

South African Department of Science and Innovation through the Collaborative Program in Additive Manufacturing

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3