A Theoretical Model of the Flow Properties of Postprocessed Direct Metal Laser Sintering Ti6Al4V (ELI)

Author:

Muiruri A. M.12ORCID,Maringa M.1ORCID,du Preez W.1ORCID

Affiliation:

1. Department of Mechanical and Mechatronics Engineering, Faculty of Engineering,Built Environment and Information Technology, Central University of Technology, Free State Private Bag X20539, Bloemfontein, South Africa

2. Department of Mechanical Engineering, School of Engineering and Technology, South Eastern University Kenya, Kitui, Kenya

Abstract

Heat treatment of direct metal laser sintering (DMLS) Ti6Al4V (ELI) generates different mechanical properties of the alloy depending on the heat treatment cycle adopted. This is due to the different aspects of the microstructure, such as phase fraction, grain size, texture, and dislocation density, which vary with heat treatment. Other external factors, such as the prevailing level of strain, strain rate, and temperature, also affect the mechanical properties of the material. This paper presents the development of a theoretical model that couples the effects of strain rate, temperature, strain, grain size, and initial dislocation density to describe the flow properties of DMLS Ti6Al4V (ELI). According to the model, higher initial dislocation density results in higher yield stress, low strain hardening, and earlier saturation of flow stress. The model shows that the parabolic shape of the stress-strain curve of the alloy is dictated by the initial dislocation density, which is generally a factor of grain size.

Funder

Council for Scientific and Industrial Research, South Africa

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3