Effect of Alternating Magnetic Field on Arc Plasma Characteristics and Droplet Transfer during Narrow Gap Laser-MIG Hybrid Welding

Author:

Cai Baihao,Fu Juan,Zhao Yong,Chen Fugang,Qin Yonghui,Song Shuming

Abstract

In this paper, the morphological characteristics of arc plasma and droplet transfer during the alternating magnetic field-assisted narrow gap groove laser-MIG (metal inert gas) hybrid welding process were investigated. The characteristics of arc plasma and droplet transfer, electron temperature, and density were analyzed using a high-speed camera and spectrum diagnosis. Our results revealed that the arc maintained a relatively stable state and rotated at a high speed to enhance the arc stiffness, and further improved the stability of the arc under the alternating magnetic field. The optimum magnetic field parameters in this experiment were B = 16 mT and f = 20 Hz, the electron temperature was 9893.6 K and the electron density was 0.99 × 1017 cm−3 near the bottom of the groove, which improved the temperature distribution inside the narrow gap groove and eliminated the lack of sidewall fusion defect. Compared to those without a magnetic field, the magnetic field could promote droplet transfer, the droplet diameter decreased by 17.6%, and the transition frequency increased by 23.5% (owing to the centrifugal force during droplet spinning and electromagnetic contraction force). The width of the weld bead was increased by 12.4% and the pores were also significantly reduced due to the stirring of the magnetic field on the molten pool.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3