Mechanism of pore suppression in aluminum alloy laser-MIG hybrid welding based on alternating magnetic field

Author:

Zhu Benqiang1ORCID,Zhao Yong1,Chen Fugang1ORCID,Fu Juan1ORCID,Wang Feiyun1ORCID,Chen Guoqiang2,Qin Yonghui2ORCID

Affiliation:

1. Provincial Key Lab of Advanced Welding Technology, Jiangsu University of Science and Technology 1 , Zhenjiang, Jiangsu 212003, China

2. Jiangsu Yangzi-Mitsui Shipbuilding Co., Ltd. 2 , Taicang, Jiangsu 215400, China

Abstract

An experiment was conducted on the laser-metal inert gas hybrid welding of 7075 aluminum alloy under alternating magnetic field assistance, in order to investigate the effect of the magnetic field on weld porosity defects in aluminum alloy. The internal porosity of the weld seam under different magnetic field conditions was compared and analyzed through radiographic inspection. The impact of the alternating magnetic field on the arc shape and keyhole dynamic behavior was observed and analyzed by high-speed photography. The results showed that without a magnetic field, the arc shape underwent continuous scaling during the transition of molten droplets, the keyhole root was unstable, and there were a large number of process-induced porosities distributed in the center of the weld. When the magnetic field strength was 10 mT, the keyhole was completely unstable, and the size of the internal porosities in the weld seam significantly increased while the number of porosities decreased. At a magnetic field strength of 20 mT, the arc exhibited a rotating oscillation behavior, the keyhole was in a stable open state, and no porosity was detected in the weld seam. Upon reaching a magnetic field strength of 30 mT, the keyhole was also in a root unstable state, but the collapse and recombination speed of the keyhole were faster than that without a magnetic field, and the size and number of internal porosities in the weld seam significantly decreased.

Publisher

Laser Institute of America

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3