Abstract
Thresholding algorithms segment an image into two parts (foreground and background) by producing a binary version of our initial input. It is a complex procedure (due to the distinctive characteristics of each image) which often constitutes the initial step of other image processing or computer vision applications. Global techniques calculate a single threshold for the whole image while local techniques calculate a different threshold for each pixel based on specific attributes of its local area. In some of our previous work, we introduced some specific fuzzy inclusion and entropy measures which we efficiently managed to use on both global and local thresholding. The general method which we presented was an open and adaptable procedure, it was free of sensitivity or bias parameters and it involved image classification, mathematical functions, a fuzzy symmetrical triangular number and some criteria of choosing between two possible thresholds. Here, we continue this research and try to avoid all these by automatically connecting our measures with the wanted threshold using some Artificial Neural Network (ANN). Using an ANN in image segmentation is not uncommon especially in the domain of medical images. However, our proposition involves the use of an Adaptive Neuro-Fuzzy Inference System (ANFIS) which means that all we need is a proper database. It is a simple and immediate method which could provide researchers with an alternative approach to the thresholding problem considering that they probably have at their disposal some appropriate and specialized data.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献