FaceMask: A New Image Dataset for the Automated Identification of People Wearing Masks in the Wild

Author:

Vrigkas MichalisORCID,Kourfalidou Evangelia-Andriana,Plissiti Marina E.ORCID,Nikou ChristophorosORCID

Abstract

The rapid spread of the COVID-19 pandemic, in early 2020, has radically changed the lives of people. In our daily routine, the use of a face (surgical) mask is necessary, especially in public places, to prevent the spread of this disease. Furthermore, in crowded indoor areas, the automated recognition of people wearing a mask is a requisite for the assurance of public health. In this direction, image processing techniques, in combination with deep learning, provide effective ways to deal with this problem. However, it is a common phenomenon that well-established datasets containing images of people wearing masks are not publicly available. To overcome this obstacle and to assist the research progress in this field, we present a publicly available annotated image database containing images of people with and without a mask on their faces, in different environments and situations. Moreover, we tested the performance of deep learning detectors in images and videos on this dataset. The training and the evaluation were performed on different versions of the YOLO network using Darknet, which is a state-of-the-art real-time object detection system. Finally, different experiments and evaluations were carried out for each version of YOLO, and the results for each detector are presented.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference35 articles.

1. Detecting Masked Faces in the Wild with LLE-CNNs

2. The ethical questions that haunt facial-recognition research

3. MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition;Guo,2016

4. FaceMask: A New Image Dataset for the Automated Identification of People Wearing Mask in the Wildhttps://mvrigkas.github.io/FaceMaskDataset/

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3