PERFORMANCE EVALUATION FOR FACE MASK DETECTION BASED ON MULT MODIFICATION OF YOLOV8 ARCHITECTURE

Author:

AL-Shamdeen MunaORCID,Ramo Fawziya Mahmood

Abstract

This work aims to engineer a robust system capable of real-time detection, accurately discerning individuals who are either adhering to or neglecting face mask mandates, across a diverse range of scenarios encompassing images, videos, and live camera streams. This study improved the architecture of YOLOv8n for face mask detection by building a new two-modification version of YOLOv8n model to improve feature extraction and prediction network for YOLOv8n. In proposed YOLOv8n-v1, the integration of a residual Network backbone into the YOLOv8n architecture by replacing the first two layers of YOLOv8n with ResNet_Stem and ResNet_Block modules to improve the model’s ability for feature extraction and replace Spatial Pyramid Pooling Fast (SPPF) module with Spatial Pyramid Pooling-Cross Stage Partial (SPPCSP) modules which combine SPP and CSP to create a network that is both effective and efficient. The proposed YOLOv8n-v2 is built by integration Ghostconv and ResNet_Downsampling modules into the proposed YOLOv8n-v1 backbone. All models have been tested and evaluated on two datasets. The first one is MJFR dataset, which contains 23,621 images, and collected by the authors of this paper from four distinct datasets, all of which were used for facemask detection purposes. The second one is MSFM object detection dataset has been collected from groups of videos in real life and images based on the curriculum learning technology. The model’s performance is assessed by using the following metrics: mean average precision (mAP50), mAP50-95, recall (R) and precision (P). It has been concluded that both versions of proposed YOLOv8n outperform the original model in terms of accuracy for both datasets. Finally, the system was successfully implemented in one of the medical clinics affiliated with a medical complex, where the results of its application showed high efficiency in various aspects of work, and it effectively contributed to improving the public health and safety.

Publisher

Politechnika Lubelska

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3