Verification of a Deep Learning-Based Tree Species Identification Model Using Images of Broadleaf and Coniferous Tree Leaves

Author:

Minowa YasushiORCID,Kubota Yuhsuke,Nakatsukasa Shun

Abstract

The objective of this study was to verify the accuracy of tree species identification using deep learning with leaf images of broadleaf and coniferous trees in outdoor photographs. For each of 12 broadleaf and eight coniferous tree species, we acquired 300 photographs of leaves and used those to produce 72,000 256 × 256-pixel images. We used Caffe as the deep learning framework and AlexNet and GoogLeNet as the deep learning algorithms. We constructed four learning models that combined two learning patterns: one for individual classification of 20 species and the other for two-group classification (broadleaf vs. coniferous trees), with and without data augmentation, respectively. The performance of the proposed model was evaluated according to the MCC and F-score. Both classification models exhibited very high accuracy for all learning patterns; the highest MCC was 0.997 for GoogLeNet with data augmentation. The classification accuracy was higher for broadleaf trees when the model was trained using broadleaf only; for coniferous trees, the classification accuracy was higher when the model was trained using both tree types simultaneously than when it was trained using coniferous trees only.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3