Membrane-Based Processes: Optimization of Hydrogen Separation by Minimization of Power, Membrane Area, and Cost

Author:

Mores Patricia,Arias Ana,Scenna Nicolás,Caballero José,Mussati Sergio,Mussati Miguel

Abstract

This work deals with the optimization of two-stage membrane systems for H2 separation from off-gases in hydrocarbons processing plants to simultaneously attain high values of both H2 recovery and H2 product purity. First, for a given H2 recovery level of 90%, optimizations of the total annual cost (TAC) are performed for desired H2 product purity values ranging between 0.90 and 0.95 mole fraction. One of the results showed that the contribution of the operating expenditures is more significant than the contribution of the annualized capital expenditures (approximately 62% and 38%, respectively). In addition, it was found that the optimal trade-offs existing between process variables (such as total membrane area and total electric power) depend on the specified H2 product purity level. Second, the minimization of the total power demand and the minimization of the total membrane area were performed for H2 recovery of 90% and H2 product purity of 0.90. The TAC values obtained in the first and second cases increased by 19.9% and 4.9%, respectively, with respect to that obtained by cost minimization. Finally, by analyzing and comparing the three optimal solutions, a strategy to systematically and rationally provide ‘good’ lower and upper bounds for model variables and initial guess values to solve the cost minimization problem by means of global optimization algorithms is proposed, which can be straightforward applied to other processes.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference26 articles.

1. Recovering hydrogen—And profits—From hydrogen-rich offgas;Benson;Chem. Eng. Prog.,2018

2. Polymeric Membranes for Gas Separation;Favre,2010

3. Hydrogen Membrane Technologies and Application in Fuel Processing;Edlund,2009

4. Membrane Technology in the Chemical Industry: Future Directions;Baker,2001

5. Membrane recovery of hydrogen from gaseous mixtures of biogenic and technogenic origin

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3