An Energy–Economic–Environment Tri-Objective Evaluation Method for Gas Membrane Separation Processes of H2/CO2

Author:

Bao Junjiang12,Li Shuai12,Zhang Xiaopeng12ORCID,Zhang Ning12

Affiliation:

1. State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China

2. School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China

Abstract

For pre-combustion carbon capture, the high syngas pressure provides a sufficient mass transfer driving force to make the gas membrane separation process an attractive option. Comparisons of combined different membrane materials (H2-selective and CO2-selective membranes) and membrane process layouts are very limited. Especially, the multi-objective optimization of such processes requires further investigation. Therefore, this paper proposes 16 two-stage combined membranes system for pre-combustion CO2 capture, including 4 two-stage H2-selective membrane systems, 4 two-stage CO2-selective membrane systems, and 8 two-stage hybrid membrane systems. A tri-objective optimization method of energy, economy, and environment is proposed for comprehensive evaluation of the proposed systems. Results show that with the targets of 90% CO2 purity and recovery, six gas membrane separation systems could be satisfied. After further multi-objective optimization and comparison, the C1H2-4 system (the hybrid system with H2-selective membranes and CO2-selective membranes) has the best performance. Feed composition and separation requirements also have an important influence on the multi-objective optimization results. The effects of selectivity and permeance of H2-selective and CO2-selective membranes on the performance of the C1H2-4 system are also significant.

Funder

National Key Research and Development Program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3