Acoustic Wave Propagation in a Borehole with a Gas Hydrate-Bearing Sediment

Author:

Liu Lin,Zhang Xiumei,Ji Yunjia,Wang Xiuming

Abstract

A knowledge of wave propagation in boreholes with gas hydrate-bearing sediments, a typical three-phase porous medium, is of great significance for better applications of acoustic logging information on the exploitation of gas hydrate. To study the wave propagation in such waveguides based on the Carcione–Leclaire three-phase theory, according to the equations of motion and constitutive relations, a staggered-grid finite-difference time-domain (FDTD) scheme and a real axis integration (RAI) algorithm in a two-dimensional (2D) cylindrical coordinate system are proposed. In the FDTD scheme, the partition method is used to solve the stiff problem, and the nonsplitting perfect matched layer (NPML) scheme is extended to solve the problem of the false reflection waves from the artificial boundaries of the computational region. In the RAI algorithm, combined with six boundary conditions, the displacement potentials of waves are studied to calculate the borehole acoustic wavefields. The effectiveness is verified by comparing the results of the two algorithms. On this basis, the acoustic logs within a gas hydrate-bearing sediment are investigated. In particular, the wave field in a borehole is analyzed and the amplitude of a Stoneley wave under different hydrate saturations is studied. The results indicate that the attenuation coefficient of the Stoneley wave increases with the increase of gas hydrate saturation. The acoustic responses in a borehole embedded in a horizontally stratified hydrate formation are also simulated by using the proposed FDTD scheme. The result shows that the amplitude of the Stoneley wave from the upper interface is smaller than that from the bottom interface.

Funder

the National Natural Science Foundation of China the Strategic Pilot and Technology Special of Chinese Academy of Sciences, China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3