Rock Physics Modeling of Acoustic Properties in Gas Hydrate-Bearing Sediment

Author:

Zhan Linsen,Liu Biao,Zhang Yi,Lu Hailong

Abstract

Gas hydrates (GH) are well known to have an influential effect on the velocity and attenuation of gas hydrate-bearing sediments (GHBS). Based on rock physics modeling, sediment velocity has been extensively used to characterize the distribution of gas hydrate. However, the results obtained from different models show a significant variation. In this study, we firstly review and compare the existing rock physics modeling for velocity and attenuation. The assumption, characteristics, theoretical basis, and workflow of the modeling are briefly introduced. The feasibility and limitations of the published models are then discussed and compared. This study provides insight into how to select a suitable rock physics model and how to conduct modeling in the application of the rock physics model to field data. Then, we introduce how to predict hydrate saturation, hydrate morphology, the dip angle of fracture, sediment permeability, and attenuation mechanisms from the comparison between the modeled and measured acoustic properties. The most important application of rock physics modeling is predicting the hydrate saturation and we discuss the uncertainties of the predicted saturation caused by the errors related to the velocity measurements or rock physics modeling. Finally, we discuss the current challenges in rock physics modeling related to optimizing the input parameters, choice of a suitable model, and upscaling problems from ultrasonic to seismic and well log frequencies.

Funder

China Geological Survey

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3