Laboratory measurements of water saturation effects on the acoustic velocity and attenuation of sand packs in the 1–20 kHz frequency range

Author:

Sutiyoso Hanif S.12ORCID,Sahoo Sourav K.2,North Laurence J.2,Minshull Timothy A.1,Falcon‐Suarez Ismael Himar2ORCID,Best Angus I.2ORCID

Affiliation:

1. School of Ocean and Earth Science University of Southampton, Waterfront Campus, European Way Southampton UK

2. National Oceanography Centre, European Way Southampton UK

Abstract

AbstractWe present novel experimental measurements of acoustic velocity and attenuation in unconsolidated sand with water saturation within the sonic (well‐log analogue) frequency range of 1–20 kHz. The measurements were conducted on jacketed sand packs with 0.5‐m length and 0.069‐m diameter using a bespoke acoustic pulse tube (a water‐filled, stainless steel, thick‐walled tube) under 10 MPa of hydrostatic confining pressure and 0.1 MPa of atmospheric pore pressure. We assess the fluid distribution effect on our measurements through an effective medium rock physics model, using uniform and patchy saturation approaches. Our velocity and attenuation (Q−1) are accurate to ±2.4% and ±5.8%, respectively, based on comparisons with a theoretical transmission coefficient model. Velocity decreases with increasing water saturation up to ∼75% and then increases up to the maximum saturation. The velocity profiles across all four samples show similar values with small differences observed around 70%–90% water saturation, then converging again at maximum saturation. In contrast, the attenuation increases at low saturation, followed by a slight decrease towards maximum saturation. Velocity increases with frequency across all samples, which contrasts with the complex frequency‐dependent pattern of attenuation. These results provide valuable insights into understanding elastic wave measurements over a broad frequency spectrum, particularly in the sonic range.

Publisher

Wiley

Reference71 articles.

1. ASTM(2007)Standard test methods for laboratory compaction characteristics of soil using standard effort.ASTM International. ASTM Standard D698.

2. Introduction and Application of the Modified Patchy Saturation for Evaluating CO2 Saturation by Seismic Velocity

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3