Passive Acoustic Detection of Vessel Activity by Low-Energy Wireless Sensors

Author:

Lowes Gavin JamesORCID,Neasham JeffreyORCID,Burnett Richie,Sherlock BenjaminORCID,Tsimenidis Charalampos

Abstract

This paper presents the development of a low-energy passive acoustic vessel detector to work as part of a wireless underwater monitoring network. The vessel detection method is based on a low-energy implementation of Detection of Envelope Modulation On Noise (DEMON). Vessels produce a broad spectrum modulated noise during propeller cavitation, which the DEMON method aims to extract for the purposes of automated detection. The vessel detector design has different approaches with mixtures of analogue and digital processing, as well as continuous and duty-cycled sampling/processing. The detector re-purposes an existing acoustic modem platform to achieve a low-cost and long-deployment wireless sensor network. This integrated communication platform enables the detector to switch between detection/communication mode seamlessly within software. The vessel detector was deployed at depth for a total of 84 days in the North Sea, providing a large data set, which the results are based on. Open sea field trial results have shown detection of single and multiple vessels with a 94% corroboration rate with local Automatic Identification System (AIS) data. Results showed that additional information about the detected vessel such as the number of propeller blades can be extracted solely based on the detection data. The attention to energy efficiency led to an average power consumption of 11.4 mW, enabling long term deployments of up to 6 months using only four alkaline C cells. Additional battery packs and a modified enclosure could enable a longer deployment duration. As the detector was still deployed during the first UK lockdown, the impact of COVID-19 on North Sea fishing activity was captured. Future work includes deploying this technology en masse to operate as part of a network. This could afford the possibility of adding vessel tracking to the abilities of the vessel detection technology when deployed as a network of sensor nodes.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference35 articles.

1. Find Out about the World’s Ocean Habitats and Morewww.nationalgeographic.com

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3