Ultra-Low-Cost and Ultra-Low-Power, Miniature Acoustic Modems Using Multipath Tolerant Spread-Spectrum Techniques

Author:

Sherlock BenjaminORCID,Morozs NilsORCID,Neasham JeffreyORCID,Mitchell PaulORCID

Abstract

To enable long-term, large-scale, dense underwater sensor networks or Internet of Underwater Things (IoUT) this research investigates new novel waveforms and experimental prototypes for robust communications on ultra-low-cost and ultra-low-power, miniature acoustic modems. Spread-spectrum M-ary orthogonal signalling (MOS) is used with symbols constructed from subsequences of long pseudorandom codes. This decorrelates multipath signals, even when the time-spread spans many symbols, so they present as random noise. A highly cost-engineered and miniaturised prototype acoustic modem implementation was created, for the 24 kHz–32 kHz band, with low receive power consumption (12.5 mW) and transmit power of <1 W. Simulations show that the modulation scheme achieves 640 bit/s at −4.5 dB with AWGN or the equivalent level of multipath energy. Experimental validation of the hardware shows successful point-to-point communication at ranges of >3 km in lakes and >2 km in the sea including severe multipath. In lake testing of a 7-node, multi-hop, sensor network with TDA-MAC protocol, packet delivery was near 100% for all nodes. Trials of acoustic sensor nodes in the North Sea achieved 99.5% data delivery over a 3-month period and a wide range of sea conditions. Modulation and hardware have proven reliable in a variety of underwater environments. Competitive range and throughput with low cost and power are attractive for large-scale and long-term battery-operated networks. This research has delivered a viable and affordable communication technology for future IoUT applications.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference35 articles.

1. Company Websitehttps://web.archive.org/web/20200716112625/https://www.ecosub.uk/

2. Submarine Cultures Perform Long-Term Robotic Exploration of Unconventional Environmental Nicheshttps://cordis.europa.eu/project/id/640967

3. Microfloat—A Simple Underwater Robot for Distributed Sensing in Coastal Watershttps://web.archive.org/web/20200716112347/https://www.pmec.us/research-projects/microfloat

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3