A Physics-Informed Neural Network for the Prediction of Unmanned Surface Vehicle Dynamics

Author:

Xu Peng-FeiORCID,Han Chen-Bo,Cheng Hong-Xia,Cheng Chen,Ge Tong

Abstract

A three-degrees-of-freedom model, including surge, sway and yaw motion, with differential thrusters is proposed to describe unmanned surface vehicle (USV) dynamics in this study. The experiment is carried out in the Qing Huai River and the data obtained from different zigzag trajectories are filtered by a Gaussian filtering method. A physics-informed neural network (PINN) is proposed to identify the dynamic models of the USV. PINNs combine the advantages of data-driven machine learning and physical models. They can also embed the speed and steering models into the loss function, which can significantly retain all types of information. Compared with traditional neural networks, the results show that the PINN has better generalization ability in predicting the surge and sway velocities and rotation speed with only limited training data.

Funder

National Natural Science Foundation of China

Marine Science and Technology Innovation Project of Jiangsu Province

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference20 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3