A Transfer-Based Convolutional Neural Network Model with Multi-Signal Fusion and Hyperparameter Optimization for Pump Fault Diagnosis

Author:

Zhang Zhigang1,Tang Aimin1,Zhang Tao1

Affiliation:

1. School of Mechanical Engineering, Sichuan University, Chengdu 610065, China

Abstract

Pumps are one of the core components of drilling equipment, and their fault diagnosis is of great significance. The data-driven approach has made remarkable achievements in the field of pump fault diagnosis; however, most of them are easily affected by complex background conditions and usually suffer from data scarcity problems in real-industrial scenarios, which limit their application in practical engineering. To overcome the above shortcoming, a novel framework for a model named Hyperparameter Optimization Multiple-Signal Fusion Transfer Convolution Neural Network is proposed in this paper. A convolutional neural network model based on transfer learning is built to promote well-learned knowledge transfer over different background conditions, improve robustness, and generalize the model to cross-domain diagnosis tasks. The multi-signal fusion strategy is involved in capturing system state information for establishing the mapping relationship between the raw signal and fault pattern by integrating the multi-physical signal with the weight allocation protocol. The hyperparameter optimization method is explored in conjunction with the transfer-based model by integrating Grid Search with the Gradient Descent algorithm for further improvement of diagnosis performance. Results show that the proposed model can effectively realize the fault diagnosis of pumps under different background conditions, achieving 95% accuracy.

Funder

Sichuan Provincial Science and Technology Plan Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3