Learning Attention Representation with a Multi-Scale CNN for Gear Fault Diagnosis under Different Working Conditions

Author:

Yao Yong,Zhang SenORCID,Yang Suixian,Gui Gui

Abstract

The gear fault signal under different working conditions is non-linear and non-stationary, which makes it difficult to distinguish faulty signals from normal signals. Currently, gear fault diagnosis under different working conditions is mainly based on vibration signals. However, vibration signal acquisition is limited by its requirement for contact measurement, while vibration signal analysis methods relies heavily on diagnostic expertise and prior knowledge of signal processing technology. To solve this problem, a novel acoustic-based diagnosis (ABD) method for gear fault diagnosis under different working conditions based on a multi-scale convolutional learning structure and attention mechanism is proposed in this paper. The multi-scale convolutional learning structure was designed to automatically mine multiple scale features using different filter banks from raw acoustic signals. Subsequently, the novel attention mechanism, which was based on a multi-scale convolutional learning structure, was established to adaptively allow the multi-scale network to focus on relevant fault pattern information under different working conditions. Finally, a stacked convolutional neural network (CNN) model was proposed to detect the fault mode of gears. The experimental results show that our method achieved much better performance in acoustic based gear fault diagnosis under different working conditions compared with a standard CNN model (without an attention mechanism), an end-to-end CNN model based on time and frequency domain signals, and other traditional fault diagnosis methods involving feature engineering.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3