Environmental Risk Identification and Green Finance Development Based on Multi-scale Fusion Recognition Network

Author:

Tang Meili,Li XiaoyuanORCID

Abstract

AbstractThis paper aims to enhance the resilience of financial enterprises against environmental risks by leveraging financial data analysis tools. The approach involves designing environmental risk assessment indicators and rating criteria. The study utilizes a convolutional neural network model extended by a multi-scale feature fusion module to analyze environmental risk information in the industry. The proposed model achieves impressive results with accuracy (Acc), precision (P), recall (R), and F1 scores reaching 99.09, 96.31, 95.32, and 95.64, respectively. These metrics outperform those of comparison models. The success of this model is anticipated to pave the way for the transformation of green finance through automated industry-level environmental risk assessment. Furthermore, the method’s adaptability extends beyond environmental risks, offering a scalable solution for identifying and assessing environmental risks in various contexts.

Publisher

Springer Science and Business Media LLC

Reference30 articles.

1. Chen, J., Wang, Q., Peng, W., Xu, H., Li, X., & Xu, W. (2022). Disparity-based multi-scale fusion network for transportation detection. IEEE Transactions on Intelligent Transportation Systems, 23(10), 18855–18863.

2. Chen, L. C., Papandreou, G., Schroff, F., & Adam, H. (2017). Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587.

3. Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1251–1258).

4. Ding, S. F., Zhu, Z. B., & Zhang, X. K. (2017). An overview on semi-supervised support vector machine. Neural Computing and Applications, 28, 969–978.

5. Dogan, A., & Birant, D. (2021). Machine learning and data mining in manufacturing. Expert Systems with Applications, 166, 114060.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3