Research on Fine-Grained Image Recognition of Birds Based on Improved YOLOv5

Author:

Yi Xiaomei1,Qian Cheng1ORCID,Wu Peng1ORCID,Maponde Brian Tapiwanashe1,Jiang Tengteng1,Ge Wenying1

Affiliation:

1. College of Mathematics & Computer Science, Zhejiang A & F University, Hangzhou 311300, China

Abstract

Birds play a vital role in maintaining biodiversity. Accurate identification of bird species is essential for conducting biodiversity surveys. However, fine-grained image recognition of birds encounters challenges due to large within-class differences and small inter-class differences. To solve this problem, our study took a part-based approach, dividing the identification task into two parts: part detection and identification classification. We proposed an improved bird part detection algorithm based on YOLOv5, which can handle partial overlap and complex environmental conditions between part objects. The backbone network incorporates the Res2Net-CBAM module to enhance the receptive fields of each network layer, strengthen the channel characteristics, and improve the sensitivity of the model to important information. Additionally, in order to boost data on features extraction and channel self-regulation, we have integrated CBAM attention mechanisms into the neck. The success rate of our suggested model, according to experimental findings, is 86.6%, 1.2% greater than the accuracy of the original model. Furthermore, when compared with other algorithms, our model’s accuracy shows noticeable improvement. These results show how useful the method we suggested is for quickly and precisely recognizing different bird species.

Funder

National Key R & D Plan Project Sub Project

Zhejiang Province Key R & D Plan Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3