Dosimetric Study of Heat-Treated Calcium–Aluminum–Silicon Borate Dosimeter for Diagnostic Radiology Applications

Author:

Algain Ibrahim,Arib Mehenna,Al-Said Said A. Farha,Donya HossamORCID

Abstract

The production of thermoluminescence (TL) dosimeters fabricated from B2O3-CaF2-Al2O3-SiO2 doped with Cu and Pr for use in diagnostic radiology is the main goal of this research. The TL samples were synthesized via the melt-quench technique processed by melting the mixture at 1200 °C for 1 h, and, after cooling, the sample thus created was divided into two samples and retreated by heating for 2 h (referred to as TLV30) and for 15 h (referred to as TLV17). SEM and EDS analyses were performed on the TL samples to confirm the preparation process and to investigate the effects of irradiation dosimetry on the TL samples. Furthermore, the TL samples were irradiated with γ-rays using a 450 Ci 137Cs irradiator and variable X-ray beams (5–70 mGy). Two important diagnostic radiology applications were considered: CT (6–24 mGy) and mammography (2.72–10.8 mGy). Important dosimetric properties, such as the glow curves, reproducibility, dose–response linearity, energy dependence, minimum dose detectability and fading, were investigated for the synthetized samples (TLV17 and TLV30), the results of which were compared with the Harshaw TLD-100. The TLV17 dosimeter showed higher sensitivity than TLV30 in all applied irradiation procedures. The dose–response linearity coefficients of determination R2 for TLV17 were higher than TLD-100 and TLV30 in some applications and were almost equal in others. The reproducibility results of TLV17, TLV30 and TLD-100 were less than 5%, which is acceptable. On the other hand, the results of the fading investigations showed that, in general, TLV17 showed less fading than TLV30. Both samples showed a significant decrease in this regard after the first day, and then the signal variation became essentially stable though with a slight decrease until the eighth day. Therefore, it is recommended to read the TL dosimeters after 24 h, as with TLD-100. The SEM images confirmed the existence of crystallization, whilst the EDS spectra confirmed the presence of the elements used for preparation. Furthermore, we noticed that TLV17 had grown dense crystals that were larger in size compared to those of TLV30, which explains the higher sensitivity in TLV17. Overall, despite the fading, TLV17 showed greater radiation sensitivity and dose–response linearity compared with TLD-100. The synthetized TL samples showed their suitability for use as dosimeters in diagnostic radiology radiation dosimetry.

Funder

Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah

DSR

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference37 articles.

1. Donya, H. (2022). Dosimetry, IntechOpen. Available online: https://www.intechopen.com/chapters/80975.

2. Thermoluminescent materials for medical applications: LiF: Mg, Ti and LiF: Mg, Cu, P;Moscovitch;Radiat. Meas.,2006

3. Development feasibility of TLD phosphors and thermoluminescent composite materials for potential applications in dosimetry: A review;Chem. Eng. J.,2022

4. ThermoFisher Scientific (2022). TLD-100 Thermoluminescent Dosimetry Material, ThermoFisher Scientific.

5. Thermoluminescence dosimetry and its applications. Radiation Protection;Pradhan;Radiat. Prot.,1981

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3