A Kalman Filter-Based Kernelized Correlation Filter Algorithm for Pose Measurement of a Micro-Robot

Author:

Zhang Heng,Zhan HongwuORCID,Zhang Libin,Xu Fang,Ding Xinbin

Abstract

This paper proposes a moving-target tracking algorithm that measures the pose of a micro-robot with high precision and high speed using the Kalman filter-based kernelized correlation filter (K2CF) algorithm. The adaptive Kalman filter can predict the state of linearly and nonlinearly fast-moving targets. The kernelized correlation filter algorithm then accurately detects the positions of the moving targets and uses the detection results to modify the moving states of the targets. This paper verifies the performance of the algorithm on a monocular vision measurement platform and using a pose measurement method. The K2CF algorithm was embedded in the micro-robot’s attitude measurement system, and the tracking performances of three different trackers were compared under different motion conditions. Our tracker improved the positioning accuracy and maintained real-time operation. In a comparison study of K2CF and many other algorithms on Object Tracking Benchmark-50 and Object Tracking Benchmark-100 video sequences, the K2CF algorithm achieved the highest accuracy. In the 400 mm × 300 mm field of view, when the target radius is about 3 mm and the inter-frame acceleration displacement does not exceed 5.6 mm, the root-mean-square error of position and attitude angle can satisfy the precision requirements of the system.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3