New Approach for the Detection of Sub-ppm Limonene: An Investigation through Chemoresistive Metal-Oxide Semiconductors

Author:

Rossi Arianna1,Spagnoli Elena1,Tralli Francesco1,Marzocchi Marco2,Guidi Vincenzo1ORCID,Fabbri Barbara1ORCID

Affiliation:

1. Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1/C, 44122 Ferrara, Italy

2. Sacmi Imola S.C., Olfactory Systems, Via Selice Prov.le, 17/a, 40026 Imola, Italy

Abstract

R-(+)-limonene, one of the major constituents of citrus oils, is a monoterpene that is widely used as a fragrance additive in cosmetics, foods, and industrial solvents. Nowadays, its detection mainly relies on bulky and expensive analytical methods and only a few research works proved its revelation through affordable and portable sensors, such as electrochemical and quartz crystal microbalance sensors. In response to the demand for effective miniaturized sensing devices to be integrated into Internet of Things systems, this study represents a pioneering investigation of chemoresistive gas sensor capabilities addressed to R-(+)-limonene detection. An array of seven metal-oxide sensors was exploited to perform a complete electrical characterization of the target analyte. The experimental evidence allowed us to identify the WO3-based sensor as the most promising candidate for R-(+)-limonene detection. The material was highly sensitive already at sub-ppm concentrations (response of 2.5 at 100 ppb), consistent with applicative parameters, and it resulted in selective vs. different gases at a lower operating temperature (200 °C) than the other sensors tested. Furthermore, it exhibited a humidity-independent behavior under real-life conditions (relative humidity > 20%). Finally, the WO3 sensor also demonstrated a remarkable cross-selectivity, thus enabling its exploitation in cutting-edge applications.

Funder

Regione Emilia-Romagna

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3