Preparation of Silicon Oxide-Carbon Composite with Tailored Electrochemical Properties for Anode in Lithium-Ion Batteries

Author:

Kim Sang Jin12,Ha Seung-Jae13,Lee Jea Uk2,Jeon Young-Pyo13,Hong Jin-Yong13ORCID

Affiliation:

1. C1 Gas & Carbon Convergent Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea

2. Department of Advanced Materials Engineering for Information and Electronics, Integrated Education Institute for Frontier Science and Technology (BK21 Four), Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea

3. Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea

Abstract

For high-efficiency and high-stability lithium ion batteries, a silicon oxide-based carbon composite has been developed as an anode material. To minimize structural defects (cracking and pulverization) due to volumetric contraction/expansion during charge/discharge, silicon oxide (SiOx) is adopted. A pitch—a carbon precursor—is introduced to the surface of SiOx using the mechanofusion method. The introduced pitch precursor can be readily transformed into a carbon layer through stabilization and carbonization processes, resulting in SiOx@C. This carbon layer plays a crucial role in buffering the volume expansion of SiOx during lithiation/delithiation processes, enhancing electrical conductivity, and preventing direct contact with the electrolyte. In order to improve the capacity and cycle stability of SiOx, the electrochemical performances of SiOx@C composites are comparatively analyzed according to the mixing ratio of SiOx and pitch, as well as the loading amount in the anode material. Compared to pristine SiOx, the SiOx@C composite prepared through the optimization of the experimental conditions exhibits approximately 1.6 and 1.8 times higher discharge capacity and initial coulombic efficiency, respectively. In addition, it shows excellent capacity retention and cycle stability, even after more than 300 charge and discharge tests.

Funder

Technology Innovation Program

Industrial Strategic Technology Development Program

Energy Core Technology Program

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3