Mediating Lithium Plating/Stripping by Constructing 3D Au@Cu Pentagonal Pyramid Array

Author:

Liang Yaohua1ORCID,Ding Wei2,Yao Bin1,Zheng Fan3,Smirnova Alevtina3,Gu Zhengrong1

Affiliation:

1. Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, USA

2. Department of Electrical Engineering and Computer Science, South Dakota State University, Brookings, SD 57007, USA

3. Department of Chemistry, Biology, and Health Sciences, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA

Abstract

Lithium (Li) metal is perceived as the “holy grail” of anodes for secondary batteries due to its innate merits. Regrettably, the commercial application of Li metal anodes (LMAs) has been hampered by problems derived from the uncontrollable growth of Li dendrites, which could result in formation of short-circuits, thereby leading to fatal safety accidents. Here, a three-dimensional lithiophilic gold (Au)-coated copper (Cu) pentagonal pyramid array (Au@CuPPA) is constructed on planar Cu foil via electrodeposition followed by a chemical reduction method. Owing to the features of the lithiophilic layer and 3D porous structure, the proposed Au@CuPPA can not only facilitate Li-ion migration and charge transfer, but also effectively diminish the nucleation overpotential. Consequently, an even and steady Li plating/stripping process for up to 460 h and with a charge capacity of 3 mAh cm−2 is accomplished by using the Au@CuPPA current collector. The Li@Au@CuPPA|LiFePO4 full cell achieves a high Coulombic efficiency (CE) of 99.4% for 150 cycles at 0.5 C with a capacity retention of 92.4%.

Funder

South Dakota “Governor’s Research Center for Electrochemical Energy Storage”, NSF EPSCoR South Dakota 2D Materials for Biofilm Engineering, Science and Technology Center

USDA–Sungrant project “Advancing the Bioeconomy through Regional Sun Grant Centers

USDA REEU “Sustainability of Agricultural Systems–Role of Interface and New Technology”

USDA Hatch

USDA Multistate Hatch

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3