The Use of Digital Terrain Models to Estimate the Pace of Filling the Pit of a Central European Granite Quarry with Water

Author:

Jawecki BartoszORCID,Szewrański SzymonORCID,Stodolak RadosławORCID,Wang ZhaolongORCID

Abstract

This paper presents the results of an analysis of the pace of filling one of the deepest European granite quarries with water. A DTM (digital terrain model) based on data from LiDAR ALS (light detection and ranging airborne laser scanning) was used to create a model of the pit of the Strzelin I granite quarry and to determine the reach and surface area of the direct catchment of the excavation pit. The increase in the volume of water in the excavation pit was determined. Analogue maps and DTM were used to calculate the maximum depth of the pit (113.3 m), its surface area (9.71 ha), and its capacity (5.1 million m3). The volume of water collected in the excavation pit during the years 2011–2018 was determined based on the analogue base map and the DTM. The result was 0.335 million m3. Based on the data made available by the mining company, the correlation of the DTM with the orthophotomap of the mining area and additional field measurements, the ordinates of the water level in the years 2011–2018 were determined. Initially, the water surface level in the quarry was located on the ordinate of 66.6 m a.s.l. (July 20, 2011). After the pumping of water was discontinued, the level rose to 96.1 m a.s.l. (January 28, 2018). The increase in the water volume in the quarry pit during specific periods was determined (actual retention increase). The obtained data on the volume of the retained water referred to the period during which it accumulated in the quarry. On average, the net increase in water retention in the excavation pit was 138.537 m3∙d−1, and the calculated net supply from the direct catchment (16.04 ha) was 101.758 m3∙d−1. The use of DTM and measurements of the water level in the excavation pit seem to be an efficient means of estimating the pace of spontaneous filling of the quarry with water supplied from the direct physiographic catchment.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3