Stripe Noise Elimination with a Novel Trend Repair Method for Push-Broom Thermal Images

Author:

Zhang Zelin12,Li Hua3ORCID,Du Yongming12,Chen Yao4,Zhao Guoxiang5,Bian Zunjian1ORCID,Cao Biao6,Xiao Qing23,Liu Qinhuo23ORCID

Affiliation:

1. Key Laboratory of Remote Sensing and Digital Earth, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China

2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China

3. National Engineering Research Center for Satellite Remote Sensing Applications, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

4. Key Laboratory of Technology in Geo-Spatial Information Processing and Application Systems, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China

5. Program of Computer Science, University of Toronto, Toronto, ON M4Y 0C8, Canada

6. State Key Laboratory of Remote Sensing Science, Innovation Research Center of Satellite Application, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

Abstract

Stripe noise is a general phenomenon in original remote sensing images that both degrades image quality and severely limits its quantitative application. While the classical statistical method is effective in correcting common stripes caused by inaccurately calibrating relative gains and offsets between detectors, it falls short in correcting other nonlinear stripe noises originating from subtle nonlinear changes or random contamination within the same detector. Therefore, this paper proposes a novel trend repair method based on two normal columns directly adjacent to a defective column to rectify the trend by considering the geospatial structure of contaminated pixels, eliminating residual stripe noise evident in level 0 (L0) remote sensing images after histogram matching. GF5-02 VIMI (Gaofen5-02, visual and infrared multispectral imager) images and simulated Landsat 8 thermal infrared sensor (TIRS) images deliberately infused with stripe noise are selected to test the new method and two other existing methods, the piece-wise method and the iterated weighted least squares (WLS) method. The effectiveness of these three methods is reflected by streaking metrics (Streaking), structural similarity (SSIM), peak signal-to-noise ratio (PSNR), and improvement factor (IF) on the uniformity, structure, and information content of the corrected GF5-02 VIMI images and by the accuracy of the corrected simulated Landsat 8 TIRS images. The experimental results indicate that the trend repair method proposed in this paper removes nonlinear stripe noise effectively, making the results of IF > 20. The remaining indicators also show satisfactory results; in particular, the mean accuracy derived from the simulated image remains below a digital number (DN) of 15, which is far superior to the other two methods.

Funder

Chinese Natural Science Foundation Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3