Target Detection in Hyperspectral Remote Sensing Image: Current Status and Challenges

Author:

Chen Bowen123ORCID,Liu Liqin123ORCID,Zou Zhengxia4,Shi Zhenwei123ORCID

Affiliation:

1. Image Processing Center, School of Astronautics, Beihang University, Beijing 100191, China

2. Beijing Key Laboratory of Digital Media, Beihang University, Beijing 100191, China

3. State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China

4. Department of Guidance, Navigation and Control, School of Astronautics, Beihang University, Beijing 100191, China

Abstract

Abundant spectral information endows unique advantages of hyperspectral remote sensing images in target location and recognition. Target detection techniques locate materials or objects of interest from hyperspectral images with given prior target spectra, and have been widely used in military, mineral exploration, ecological protection, etc. However, hyperspectral target detection is a challenging task due to high-dimension data, spectral changes, spectral mixing, and so on. To this end, many methods based on optimization and machine learning have been proposed in the past decades. In this paper, we review the representatives of hyperspectral image target detection methods and group them into seven categories: hypothesis testing-based methods, spectral angle-based methods, signal decomposition-based methods, constrained energy minimization (CEM)-based methods, kernel-based methods, sparse representation-based methods, and deep learning-based methods. We then comprehensively summarize their basic principles, classical algorithms, advantages, limitations, and connections. Meanwhile, we give critical comparisons of the methods on the summarized datasets and evaluation metrics. Furthermore, the future challenges and directions in the area are analyzed.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Beijing Natural Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference123 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3