Advancing Skarn Iron Ore Detection through Multispectral Image Fusion and 3D Convolutional Neural Networks (3D-CNNs)

Author:

Abubakar Jabir1,Zhang Zhaochong12,Cheng Zhiguo1,Yao Fojun3ORCID,Bio Sidi D. Bouko Abdoul-Aziz4

Affiliation:

1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China

2. Frontiers Science Center for Deep-Time Digital Earth, China University of Geosciences, Beijing 100083, China

3. MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

4. School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China

Abstract

This study explores novel techniques to improve the detection accuracy of skarn iron deposits using advanced image-processing methodologies. Leveraging the capabilities of ASTER image, band ratio (BR) images, and principal component analysis (PCA) alongside the power of 3D convolutional neural networks (3D-CNNs), the research aims to enhance the precision and efficiency of ore detection in complex geological environments. The proposed method employs a specific 3D-CNN architecture accepting input as a 7 × 7 × C image patch, where C represents the combined number of selected ASTER image bands, principal component (PC) bands, and computed BR images. To evaluate the accuracy of the proposed method, five distinct image band combinations, including the proposed band combination, were tested and evaluated based on the overall accuracy (OA), average accuracy (AA), and kappa coefficient. The results demonstrated that while the incorporation of BR images alongside ASTER bands initially seemed promising, it introduced significant confusion in certain classifications, leading to unexpected misclassification rates. Surprisingly, utilizing solely ASTER bands as input parameters yielded higher accuracy rates (OA = 93.13%, AA = 91.96%, kappa = 90.91%) compared with scenarios involving the integration with band ratios (OA = 87.02%, AA = 79.15, kappa = 82.60%) or the integration of BR images to PC bands (OA = 87.78%, AA = 82.39%, kappa = 83.81%). However, the amalgamation of ASTER bands with selected PC bands showed slight improvements in accuracy (OA = 94.65%, AA = 92.93%, kappa = 93.45%), although challenges in accurately classifying certain features persisted. Ultimately, the proposed combination of ASTER bands, PC bands, and BR images (proposed band combination) presented the most visually appealing and statistically accurate results (OA = 96.95%, AA = 94.87%, kappa = 95.93%), effectively addressing misclassifications observed in the other combinations. These findings underscore the synergistic contributions of each of the ASTER bands, PC bands, and BR images, with the ASTER bands proving pivotal for optimal skarn classification, the PC bands enhancing intrusions classification accuracy, and the BR images strengthening wall rock classification accuracy. In conclusion, the proposed combination of input image bands emerges as a robust and comprehensive methodology, demonstrating unparalleled accuracy in the remote sensing detection of skarn iron minerals.

Funder

Chinese Scholarship Council

Federal Scholarship Board

Bilateral Exchange Agreement

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3