Application of ASTER Data for Differentiating Carbonate Minerals and Evaluating MgO Content of Magnesite in the Jiao-Liao-Ji Belt, North China Craton

Author:

Son Young-SunORCID,Lee GilljaeORCID,Lee Bum HanORCID,Kim NamhoonORCID,Koh Sang-Mo,Kim Kwang-Eun,Cho Seong-Jun

Abstract

Numerous reports have successfully detected or differentiated carbonate minerals such as calcite and dolomite by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). However, there is a need to determine whether existing methods can differentiate magnesite from other carbonate minerals. This study proposes optimal band ratio combinations and new thresholds to distinguish magnesite, dolomite, and calcite using ASTER shortwave-infrared (SWIR) data. These were determined based on the spectral and chemical analysis of rock samples collected from Liaoning, China and Danchon, North Korea and the reflectance values from ASTER images. The results demonstrated that the simultaneous use of thresholds 2.13 and 2.015 for relative absorption band depths (RBDs) of (6 + 8)/7 and (7 + 9)/8, respectively, was the most effective for magnesite differentiation. The use of RBDs and band ratios to discriminate between dolomite and calcite was sufficiently effective. However, talc, tremolite, clay, and their mixtures with dolomite and calcite, which are commonly found in the study area, hampered the classification. The assessment of the ASTER band ratios for magnesite grade according to magnesium oxide content indicated that a band ratio of 5/6 was the most effective for this purpose. Therefore, this study proved that ASTER SWIR data can be effectively utilized for the identification and grade assessment of magnesite on a regional scale.

Funder

Korea Institute of Geoscience and Mineral Resources

National Research Council of Science and Technology

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3