Direct Contact Condensers: A Comprehensive Review of Experimental and Numerical Investigations on Direct-Contact Condensation

Author:

Madejski PawełORCID,Kuś Tomasz,Michalak PiotrORCID,Karch MichałORCID,Subramanian Navaneethan

Abstract

Direct contact heat exchangers can be smaller, cheaper, and have simpler construction than the surface, shell, or tube heat exchangers of the same capacity and can operate in evaporation or condensation modes. For these reasons, they have many practical applications, such as water desalination, heat exchangers in power plants, or chemical engineering devices. This paper presents a comprehensive review of experimental and numerical activities focused on the research about direct condensation processes and testing direct contact condensers on the laboratory scale. Computational Fluid Dynamics (CFD) methods and CFD solvers are the most popular tools in the numerical analysis of direct contact condensers because of the phenomenon’s complexity as multiphase turbulent flow with heat transfer and phase change. The presented and developed numerical models must be carefully calibrated and physically validated by experimental results. Results of the experimental campaign in the laboratory scale with the test rig and properly designed measuring apparatus can give detailed qualitative and quantitative results about direct contact condensation processes. In this case, the combination of these two approaches, numerical and experimental investigation, is the comprehensive method to deeply understand the direct contact condensation process.

Funder

AGH University of Science and Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3