Analysis of the Multiphase Flow With Condensation in the Two-Phase Ejector Condenser Using Computational Fluid Dynamics Modeling

Author:

Kuś Tomasz1,Madejski Paweł1

Affiliation:

1. AGH University of Krakow , Faculty of Mechanical Engineering and Robotics, Al. Adama Mickiewicza, Kraków 30-059 , Poland

Abstract

Abstract The liquid-driven two-phase ejector condenser is the object of the numerical investigation. The spray-ejector condenser is one of the critical components of the developed gas power plant with negative CO2 emission. The task of the ejector is to entrain exhaust gas and condense steam contained in it. Computational fluid dynamics (CFD) modeling allows analyzing complex phenomena and predicting the influence of a wide range of operating parameters on the local structure of the multiphase flow with condensation. The geometrical model of the ejector was designed to provide efficient steam condensation and generate sub-pressure region at the gas inlet. The 2D, axisymmetric CFD model was created using simcenter star ccm+ software. The multiphase mixture model was used to take into account two-phase flow. Turbulent flow was computed using k–ω SST model. Direct contact condensation of steam was calculated using two different approaches: the Spalding/evaporation model and the thermally-driven boiling/condensation model. The influence of various gas inlet velocities and the presence of CO2 on the operation of the ejector condenser were investigated based on scalar fields and charts representing changes in the most important variables along the flow path. The condensation is the most intense in the suction chamber. The boiling/condensation model predicts lower suction pressure and higher condensation effectivity than Spalding/evaporation model. The CO2 considerably affects the pressure and temperature distributions and reduces the condensation rate.

Funder

Narodowe Centrum Badan i Rozwoju

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3