ATSD: Anchor-Free Two-Stage Ship Detection Based on Feature Enhancement in SAR Images

Author:

Yao CanmingORCID,Xie Pengfei,Zhang Lei,Fang Yuyuan

Abstract

Syntheticap erture radar (SAR) ship detection in harbors is challenging due to the similar backscattering of ship targets to surrounding background interference. Prevalent two-stage ship detectors usually use an anchor-based region proposal network (RPN) to search for the possible regions of interest on the whole image. However, most pre-defined anchor boxes are redundantly and randomly tiled on the image, manifested as low-quality object proposals. To address these issues, this paper proposes a novel detection method combined with two feature enhancement modules to improve ship detection capability. First, we propose a flexible anchor-free detector (AFD) to generate fewer but higher-quality proposals around the object centers in a keypoint prediction manner, which completely avoids the complicated computation in RPN, such as calculating overlapping related to anchor boxes. Second, we leverage the proposed spatial insertion attention (SIA) module to enhance the feature discrimination between ship targets and background interference. It accordingly encourages the detector to pay attention to the localization accuracy of ship targets. Third, a novel weighted cascade feature fusion (WCFF) module is proposed to adaptively aggregate multi-scale semantic features and thus help the detector boost the detection performance of multi-scale ships in complex scenes. Finally, combining the newly-designed AFD and SIA/WCFF modules, we present a new detector, named anchor-free two-stage ship detector (ATSD), for SAR ship detection under complex background interference. Extensive experiments on two public datasets, i.e., SSDD and HRSID, verify that our ATSD delivers state-of-the-art detection performance over conventional detectors.

Funder

National Natural Science Foundation of China

Shenzhen Science and Technology Program

Aeronautical Science Foundation of China

Guangdong Key Laboratory of Advanced IntelliSense Technology

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3