An Unsupervised Port Detection Method in Polarimetric SAR Images Based on Three-Component Decomposition and Multi-Scale Thresholding Segmentation

Author:

Liu ChunORCID,Yang Jian,Zheng Jiangbin,Nie Xuan

Abstract

It is difficult to detect ports in polarimetric SAR images due to the complicated components, morphology, and coastal environment. This paper proposes an unsupervised port detection method by extracting the water of the port based on three-component decomposition and multi-scale thresholding segmentation. Firstly, the polarimetric characteristics of the port water are analyzed using modified three-component decomposition. Secondly, the volume scattering power and the power ratio of the double-bounce scattering power to the volume scattering power (PRDV) are used to extract the port water. Water and land are first separated by a global thresholding segmentation of the volume scattering power, in which the sampling region used for the threshold calculation is automatically selected by a proposed homogeneity measure. The interference water regions in the ports are then separated from the water by segmenting the PRDV using the multi-scale thresholding segmentation method. The regions of interest (ROIs) of the ports are then extracted by determining the connected interference water regions with a large area. Finally, ports are recognized by examining the area ratio of strong scattering pixels to the land in the extracted ROIs. Seven single quad-polarization SAR images acquired by RADARSAT-2 covering the coasts of Dalian, Zhanjiang, Fujian, Tianjin, Lingshui, and Boao in China and Berkeley in America are used to test the proposed method. The experimental results show that all ports are correctly and quickly detected. The false alarm rates are zero, the intersection of union section (IoU) indexes between the detected port and the ground truth can reach 75%, and the average processing time can be less than 100 s.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference30 articles.

1. Harbor Detection in Polarimetric SAR Images Based on the Characteristics of Parallel Curves

2. Small harbor detection in polarimetric SAR images based on coastline feature point merging;Liu;J. Tsinghua Univ. Sci. Technol.,2015

3. Feature extraction of the harbor target and its recognition;Li;J. Huazhong Univ. Sci. Technol.,2001

4. Harbor Extraction Based on Edge-Preserve and Edge Categories in High Spatial Resolution Remote-Sensing Images

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3