Abstract
Loess landslides represent an important geohazard in relation to the deformation of unstable loess structures occurred on the slope of loess-covered area. It has become one of the important topics to accurately identify the distribution and activity of loess landslides and describe the spatio-temporal kinematics in the western-project construction in China. Interferometric synthetic aperture radar (InSAR) proves to be effective for landslides investigation. This study proposes an improved InSAR-based procedure for large-area landslide mapping in loess-hilly areas, including tropospheric-delay correction based on quadtree segmentation and automatic selection of interferograms based on minimum-error boundary. It is tested in Dingbian County in Shaanxi Province, China. More than 200 SAR images were processed and a total of 50 potential loess landslides were detected and mapped. Results show that the landslides are mainly distributed along the river basins and concentrated in areas with elevation ranging from 1450 m to 1650 m, and with slope angles of 10–40°. Then, a total of eight (16%) loess landslides are classified as active ones based on three parameters derived from InSAR-deformation rates: activity index (AI), mean deformation rate, and maximum deformation rate. Moreover, we characterize the segmentation of detected landslides and describe the discrepancy of local topography and deformation rates by coupling the peak in probability-density curves of deformation rates and profiles of the elevation and deformation rates. Finally, correlation between landslide deformation and rainfall is given through wavelet analysis.
Funder
National Natural Science Foundation of China
Chang’an University High Performance Computing Platform
Subject
General Earth and Planetary Sciences
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献