Abstract
Semantic segmentation of remote sensing images plays a crucial role in urban planning and development. How to perform automatic, fast, and effective semantic segmentation of considerable size and high-resolution remote sensing images has become the key to research. However, the existing segmentation methods based on deep learning are complex and often difficult to apply practically due to the high computational cost of the excessive parameters. In this paper, we propose an end-to-end lightweight progressive attention semantic segmentation network (LPASS-Net), which aims to solve the problem of reducing computational costs without losing accuracy. Firstly, its backbone features are based on a lightweight network, MobileNetv3, and a feature fusion network composed of a reverse progressive attentional feature fusion network work. Additionally, a lightweight non-local convolutional attention network (LNCA-Net) is proposed to effectively integrate global information of attention mechanisms in the spatial dimension. Secondly, an edge padding cut prediction (EPCP) method is proposed to solve the problem of splicing traces in the prediction results. Finally, evaluated on the public datasets BDCI 2017 and ISPRS Potsdam, the mIoU reaches 83.17% and 88.86%, respectively, with an inference time of 0.0271 s.
Funder
National Research Foundation of Korea
Subject
General Earth and Planetary Sciences
Reference48 articles.
1. Kampffmeyer, M., Salberg, A.B., and Jenssen, R. (July, January 26). Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks. Proceedings of the IEEE Conference on Computer Visionc and Pattern Recognition Workshops, Las Vegas, NV, USA.
2. Multiattention network for semantic segmentation of fine-resolution remote sensing images;Li;IEEE Trans. Geosci. Remote Sens.,2021
3. Yi, Y., Zhang, Z., Zhang, W., Zhang, C., Li, W., and Zhao, T. (2019). Semantic segmentation of urban buildings from VHR remote sensing imagery using a deep convolutional neural network. Remote Sens., 11.
4. Semantic segmentation of slums in satellite images using transfer learning on fully convolutional neural networks;Wurm;ISPRS J. Photogramm. Remote Sens.,2019
5. Sun, S., Mu, L., Wang, L., Liu, P., Liu, X., and Zhang, Y. (2021). Semantic segmentation for buildings of large intra-class variation in remote sensing images with O-GAN. Remote Sens., 13.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献