Semantic Segmentation for Buildings of Large Intra-Class Variation in Remote Sensing Images with O-GAN

Author:

Sun ShutingORCID,Mu LinORCID,Wang LizheORCID,Liu PengORCID,Liu Xiaolei,Zhang Yuwei

Abstract

Remote sensing building extraction is of great importance to many applications, such as urban planning and economic status assessment. Deep learning with deep network structures and back-propagation optimization can automatically learn features of targets in high-resolution remote sensing images. However, it is also obvious that the generalizability of deep networks is almost entirely dependent on the quality and quantity of the labels. Therefore, building extraction performances will be greatly affected if there is a large intra-class variation among samples of one class target. To solve the problem, a subdivision method for reducing intra-class differences is proposed to enhance semantic segmentation. We proposed that backgrounds and targets be separately generated by two orthogonal generative adversarial networks (O-GAN). The two O-GANs are connected by adding the new loss function to their discriminators. To better extract building features, drawing on the idea of fine-grained image classification, feature vectors for a target are obtained through an intermediate convolution layer of O-GAN with selective convolutional descriptor aggregation (SCDA). Subsequently, feature vectors are clustered into new, different subdivisions to train semantic segmentation networks. In the prediction stages, the subdivisions will be merged into one class. Experiments were conducted with remote sensing images of the Tibet area, where there are both tall buildings and herdsmen’s tents. The results indicate that, compared with direct semantic segmentation, the proposed subdivision method can make an improvement on accuracy of about 4%. Besides, statistics and visualizing building features validated the rationality of features and subdivisions.

Funder

NSFC

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3