Abstract
Digital twins of forests (trees) are computational virtual recreations of forests (trees) in which the entity distributions and physical processes in real-world forests (trees) are duplicated. It is expected that conventional forest science and management can be undertaken in a digital twin of forests (trees) if the recreation of a real-world forest (tree) has accurate and comprehensive enough information. However, due to the various differences between the current tree model and the real tree, these envisioned digital twins of the forests (trees) stay a theoretical concept. In this study, we developed a processing strategy that partially integrated computational virtual measurement (CVM) process into the tree modeling workflow. Owing to the feature of CVM, partial tree skeleton reconstruction procedures were considered to have higher mechanical objectivity compared to conventional mathematical modeling methods. The reason was that we developed a novel method called virtual diameter tape (VDT), which could provide a certain percentage of modeling elements using CVM. Technically, VDT was able to virtually measure diameters and spatial distribution of cross-sectional area of trees, including the basal area, from point clouds. VDT simulated the physical scenario of diameter tapes, observing point clouds of trees. Diameter and the cross-sectional area of stem and branches were obtained by two consecutive physical measurement processes, one in the forest sample site and another in the virtual space. At the same time, VDT obtained better or a similar accuracy compared to the mathematical methods, i.e., Hough transform-based methods, using the same data sets. The root-mean-square deviation (RMSE) of retrieval of diameter at breast height (DBH) using VDT was 1.02 cm, while DBH obtained from three conventional methods varied from 1.29 cm to 1.73 cm. Based on VDT measurement results, tree skeleton reconstruction and actual forest scenario rendering of our sample plots were further implemented. Beyond the visual consistency, we believe that our work might be a small and solid step in the technological evolution from tree models to the digital twin of forests (trees).
Funder
National Natural Science Foundation of China
Fundamental Research Funds of IFRIT
Natural Science Foundation of Jiangsu Province
China, the Jiangsu Provincial Agricultural Science and Technology Independent Innovation Fund Project
Opening Project Fund of Key Laboratory of Biology and Genetic Resources of Rubber Tree
Subject
General Earth and Planetary Sciences
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献