Spatiotemporal Land Use/Land Cover Mapping and Prediction Based on Hybrid Modeling Approach: A Case Study of Kano Metropolis, Nigeria (2020–2050)

Author:

Koko Auwalu FaisalORCID,Han Zexu,Wu Yue,Abubakar Ghali AbdullahiORCID,Bello Muhammed

Abstract

The change dynamics of land use/land cover (LULC) is a vital factor that significantly modifies the natural environment. Therefore, mapping and predicting spatiotemporal LULC transformation is crucial in effectively managing the built environment toward achieving Sustainable Development Goal 11, which seeks to make cities all-inclusive, sustainable, and reliable. The study aims to examine the change dynamics of LULC in Kano Metropolis, Nigeria from 1991 to 2020 and predict the city’s future land uses over the next 15 and 30 years, i.e., 2035 and 2050. The maximum likelihood algorithm (MLA) of the supervised classification method was utilized to classify the study area’s land uses using Landsat satellite data and various geographic information system (GIS) techniques. A hybrid simulation model comprising cellular automata and Markov chain (CA-Markov) was then employed in validating and modeling the change dynamics of future LULC. The model integrated the spatial continuity of the CA model with the Markov chain’s ability to address the limitations of individual models in simulating long-term land use prediction. The study revealed substantial changes in the historical LULC pattern of Kano metropolis from 1991 to 2020. It indicated a considerable decline in the city’s barren land from approximately 413.47 km2 in 1991 to 240.89 km2 in 2020. Built-up areas showed the most extensive development over the past 29 years, from about 66.16 km2 in 1991 to 218.72 km2 in 2020. This trend of rapid urban growth is expected to continue over the next three decades, with prediction results indicating the city’s built-up areas expanding to approximately 307.90 km2 in 2035 and 364.88 km2 in 2050. The result also suggests that barren lands are anticipated to decline further with the continuous sustenance of various agricultural activities, while vegetation and water bodies will slightly increase between 2020 and 2050. The findings of this study will help decision-makers and city administrators formulate sustainable land use policies for a more inclusive, safe, and resilient city.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3