Impact of Urbanization on Urban Heat Island Dynamics in Shillong City, India Using Google Earth Engine and CA-Markov Modeling

Author:

Saikia Parimita1,War Preety2,Umlong Lapynshai M.2,Nath Bibhash3

Affiliation:

1. Department of Geography, The Assam Royal Global University, Guwahati 781035, India

2. Department of Geography, North-Eastern Hill University, Shillong 793022, India

3. Department of Geography and Environmental Science, Hunter College, City University of New York, New York, NY 10021, USA

Abstract

Growth in urban areas contributes to environmental degradation through increased land surface temperature (LST), exacerbating the urban heat island (UHI) effect. This study examined how land use and land cover (LULC) characteristics of Shillong City are linked to the UHI phenomenon. The LULC was classified into five broad categories: agricultural land, barren land, settlement, vegetation, and water bodies. The results show that the study area experienced notable changes in the LULC pattern from 1993 to 2023, with settlement areas increasing by 10.96%, transforming previously barren lands. The emergence and growth of settlements (and/or built-up areas) and impervious surfaces have led to a steady increase in LST. The settlement land use class had an average LST of 17.45 °C in 1993, 21.56 °C in 2003, 21.37 °C in 2013, and 21.75 °C in 2023. From 1993 to 2023, surface temperatures in settlement areas rose by a maximum of 4.3 °C, while barren land and vegetated areas also saw an increase of 4.9 °C and 4.0 °C, respectively. The relationship between LULC and the LST has been evaluated to identify hotspot areas. The highest temperatures are found in crowded and dense built-up areas, while the lowest temperatures are found in vegetated areas and water bodies. The findings also reveal a clear warming trend over the 30-year period, marked by a substantial decrease in areas with LST below 12 °C and between 12–17 °C, highlighting a shift towards warmer temperatures. Projected LULC changes indicate that urban areas will experience significant growth, increasing from 17.36% of the total area in 2023 to 21.39% in 2030, and further to 28.56% by 2050. The results suggest that the settlement land use class will increase by 11.2%, accompanied by a decrease in agricultural lands, vegetation, and water bodies.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3