Improved Calibration of Eye-in-Hand Robotic Vision System Based on Binocular Sensor

Author:

Yu Binchao1,Liu Wei1,Yue Yi2

Affiliation:

1. Key Laboratory for Precision and Non-Traditional Machining Technology of the Ministry of Education, Dalian University of Technology, Dalian 116024, China

2. Beijing Spacecrafts, China Academy of Space Technology, Beijing 100094, China

Abstract

Eye-in-hand robotic binocular sensor systems are indispensable equipment in the modern manufacturing industry. However, because of the intrinsic deficiencies of the binocular sensor, such as the circle of confusion and observed error, the accuracy of the calibration matrix between the binocular sensor and the robot end is likely to decline. These deficiencies cause low accuracy of the matrix calibrated by the traditional method. In order to address this, an improved calibration method for the eye-in-hand robotic vision system based on the binocular sensor is proposed. First, to improve the accuracy of data used for solving the calibration matrix, a circle of confusion rectification method is proposed, which rectifies the position of the pixel in images in order to make the detected geometric feature close to the real situation. Subsequently, a transformation error correction method with the strong geometric constraint of a standard multi-target reference calibrator is developed, which introduces the observed error to the calibration matrix updating model. Finally, the effectiveness of the proposed method is validated by a series of experiments. The results show that the distance error is reduced to 0.080 mm from 0.192 mm compared with the traditional calibration method. Moreover, the measurement accuracy of local reference points with updated calibration results from the field is superior to 0.056 mm.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Liaoning Revitalization Talents Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3