Sensor-Enabled Multi-Robot System for Automated Welding and In-Process Ultrasonic NDE

Author:

Vasilev Momchil,MacLeod Charles N.,Loukas CharalamposORCID,Javadi YasharORCID,Vithanage Randika K. W.,Lines DavidORCID,Mohseni Ehsan,Pierce Stephen Gareth,Gachagan Anthony

Abstract

The growth of the automated welding sector and emerging technological requirements of Industry 4.0 have driven demand and research into intelligent sensor-enabled robotic systems. The higher production rates of automated welding have increased the need for fast, robotically deployed Non-Destructive Evaluation (NDE), replacing current time-consuming manually deployed inspection. This paper presents the development and deployment of a novel multi-robot system for automated welding and in-process NDE. Full external positional control is achieved in real time allowing for on-the-fly motion correction, based on multi-sensory input. The inspection capabilities of the system are demonstrated at three different stages of the manufacturing process: after all welding passes are complete; between individual welding passes; and during live-arc welding deposition. The specific advantages and challenges of each approach are outlined, and the defect detection capability is demonstrated through inspection of artificially induced defects. The developed system offers an early defect detection opportunity compared to current inspection methods, drastically reducing the delay between defect formation and discovery. This approach would enable in-process weld repair, leading to higher production efficiency, reduced rework rates and lower production costs.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference45 articles.

1. Robotic Welding Market Size, Share|Welding Robot Statistics by 2026https://www.alliedmarketresearch.com/robotic-welding-market

2. https://www.twi-global.com/what-we-do/research-and-technology/technologies/industry-4-0.aspx

3. A Noncontact Ultrasonic Platform for Structural Inspection

4. Automating High-Precision X-Ray and Neutron Imaging Applications With Robotics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3