Multi-UAV Data Collection and Path Planning Method for Large-Scale Terminal Access

Author:

Zhang Linfeng1ORCID,He Chuhong2,Peng Yifeng2,Liu Zhan1,Zhu Xiaorong2

Affiliation:

1. Institute of Mobile and Terminal Technology, China Telecom Research Institute, Guangzhou 510630, China

2. School of Communication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

Abstract

In the context of the relentless evolution of network and communication technologies, the need for enhanced communication content and quality continues to escalate. Addressing the demands of data collection from the abundance of terminals within Internet of Things (IoT) scenarios, this paper presents an advanced approach to multi-Unmanned Aerial Vehicle (UAV) data collection and path planning tailored for extensive terminal accessibility. This paper focuses on optimizing the complex interplay between task completion time and task volume equilibrium. To this end, a novel strategy is devised that integrates sensor area partitioning and flight trajectory planning for multiple UAVs, forming an optimization framework geared towards minimizing task completion duration. The core idea of this work involves designing an innovative k-means algorithm capable of balancing data quantities within each cluster, thereby achieving balanced sensor node partitioning based on data volume. Then, the UAV flight trajectory paths are discretely modeled, and a grouped, improved genetic algorithm is used to solve the Multiple Traveling Salesman Problem (MTSP). The algorithm introduces a 2-opt optimization operator to improve the computational efficiency of the genetic algorithm. Empirical validation through comprehensive simulations clearly underscores the efficacy of the proposed approach. In particular, the method demonstrates a remarkable capacity to rectify the historical issue of diverse task volumes among multiple UAVs, all the while significantly reducing task completion times. Moreover, its convergence rate substantially outperforms that of the conventional genetic algorithm, attesting to its computational efficiency. This paper contributes an innovative and efficient paradigm to improve the problem of data collection from IoT terminals through the use of multiple UAVs. As a result, it not only augments the efficiency and balance of task distribution but also showcases the potential of tailored algorithm solutions for realizing optimal outcomes in complex engineering scenarios.

Funder

Natural Science Foundation of China

Key R&D plan of Jiangsu Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3