Payload Identification and Gravity/Inertial Compensation for Six-Dimensional Force/Torque Sensor with a Fast and Robust Trajectory Design Approach

Author:

Duan JinjunORCID,Liu Zhouchi,Bin Yiming,Cui Kunkun,Dai ZhendongORCID

Abstract

In the robot contact operation, the robot relies on the multi-dimensional force/torque sensor installed at the end to sense the external contact force. When the effective load and speed of the robot are large, the gravity/inertial force generated by it will have a non-negligible impact on the output of the force sensor, which will seriously affect the accuracy and effect of the force control. The existing identification algorithm time is often longer, which also affects the efficiency of force control operations. In this paper, a self-developed multi-dimensional force sensor with integrated gravity/inertial force sensing function is used to directly measure the resultant force. Further, a method for the rapid identification of payload based on excitation trajectory is proposed. Firstly, both a gravity compensation algorithm and an inertial force compensation algorithm are introduced. Secondly, the optimal spatial recognition pose based on the excitation trajectory was designed, and the excitation trajectory of each joint is represented by a finite Fourier series. The least square method is used to calculate the identification parameters of the load, the gravity, and inertial force. Finally, the experiment was verified on the robot. The experimental results show that the algorithm can quickly identify the payload, and it is faster and more accurate than other algorithms.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fractional-Order Integral Neural-Adaptive Control of Nonlinear Input-Affine Systems;2024 American Control Conference (ACC);2024-07-10

2. Numerical Simulation and Design of a Mechanical Structure of an Ankle Exoskeleton for Elderly People;Technologies;2024-07-09

3. Force Control Method for the Variable Robot Payload in Metal Slag Removal Operation;2024 IEEE 13th Data Driven Control and Learning Systems Conference (DDCLS);2024-05-17

4. The GEM-C controller for Load Compensation in Object Manipulation;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

5. An automatic robot polishing control method for compound surface comprising plane and curved surfaces;The International Journal of Advanced Manufacturing Technology;2024-04-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3