Classification of Surface Vehicle Propeller Cavitation Noise Using Spectrogram Processing in Combination with Convolution Neural Network

Author:

Bach Nhat HoangORCID,Vu Le HaORCID,Nguyen Van DucORCID

Abstract

This paper proposes a method to enhance the quality of detecting and classifying surface vehicle propeller cavitation noise (VPCN) in shallow water by using the improved Detection Envelope Modulation On Noise (DEMON) algorithm in combination with the modified Convolution Neural Network (CNN). To improve the quality of the VPCN spectrogram signal, we apply the DEMON algorithm while analyzing the amplitude variation (AV) to detect the fundamental frequencies of the VPCN signal. To enhance the performance of the traditional CNN, we adapt the size of the sliding window in accordance with the properties of the VPCN spectrogram data, and also reconstruct the CNN layer structure. As for the results, the fundamental frequencies contented in the VPCN spectrogram data can be detected. The analytical results based on the measured data show that the accuracy of the VPCN classification obtained by the proposed method is above 90%, which is higher than those obtained by traditional methods.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference28 articles.

1. Underwater acoustics;Kuperman,2007

2. A Review on Deep Learning-Based Approaches for Automatic Sonar Target Recognition

3. The Development of SONAR as a Tool in Marine Biological Research in the Twentieth Century

4. Sonar Signal Processing;Nielsen,1991

5. Principles of Underwater Sound;Urick,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3